
IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 405

A Survey on NoSQL and its Terminology

Parvaneh Asghari
1
, Houman Zarrabi

2

Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
1

Iran ICT Research Center, Tehran, Iran
2

Abstract: Nowadays the world needs databases to be able to store and process big data effectively and demand for very

high-performance when reading and writing. These requirements effects especially in large scale and high concurrency

applications such as search engines, hence the traditional database limits itself for such complex requirements.

Therefore various types of non-relational databases that are commonly referred to as NoSQL databases which is

abbreviation of “Not only Structured Query Language” was emerged. This paper presents a survey on NoSQL and its

various data stores. NoSQL (Not Only SQL) is a database which is used to store large amount of data. NoSQL

databases are distributed, non-relational, open-source and horizontally scalable. In this paper fundamental concepts like

ACID, BASE and CAP theoremwill be described and present a comparison between ACID and BASE properties.

Furthermore on the basis ofthe CAP theorem, various forms of data stores in NoSQL like Key/-Value data store,

Column family data store, Document data store, Graph database and their characteristics are explained. In addition a

taxonomy of NoSQL by various data stores and also the historical trend of popularity of themis presented. At the end,

the reasons to consider a NoSQL solution for the Internet of Things data are depicted.

Keywords: NoSQL, ACID, BASE, CAP theorem, Data store, IoT.

I. INTRODUCTION

The problems with Relational database is lacked handling

exponential growth of data. Many organizations collect

vast amounts of customer‟s, scientific, sales, and other

data for future analysis. Traditionally, most of these

organizations have stored structured data in relational

databases for subsequent access and analysis. However, a

growing number of developers and users have begun

turning to various types of non-relational databases, now

frequently called NoSQL databases.

The term NoSQL stands for “Not Only SQL” and it is

used for modern non-relational, distributed, open-source

and horizontally scalable databases. Non-relational

database does not organize its data in related tables unlike

relational databases (i.e. data is stored in a non-normalized

way). In NoSQL databases data is organized in a mixed

model of structured, semi-structured and non-structured

data. So, unlike relational databases, the primary

advantage of NOSQL database is handling unstructured

data such as documents, e-mail, multimedia‟s and social

media‟s data effectively [1].

In order to store massive database a common strategy is to

partition the data and store the partitions across different

server nodes. Therefore distribution is one of the most

important aspects of NoSQL databases. Subsequently the

workload distributes across many servers, therefore

multiple systems are easily added together in a linear way

in order to Increase the throughput, so horizontal

scalability is another positive aspect of NoSQL databases.

Everyone can look into code freely, update it according to

his needs and compile it, therefore the nature of being

open-source makesNoSQL easy to use [2].

In this paper some important concepts about NoSQL such

as ACID and BASE properties are explained. In the

following the CAP theorem is described as a substantial

matter which various data store types in NoSQL are

defined and formed on it. Description of different types of

data models such as key/-value stores, column family

stores , document stores, graph databases and also a rapid

comparison of NoSQL various data stores by some

nonfunctional categories like performance, scalability,

flexibility, complexity and functionality are presented. At

the end of this paper the main reasons to consider a

NoSQL Solution for Internet of Things data are pointed.

II. NOSQL TERMINOLOGY

In NoSQL there are some important concepts which are

ACID free, BASE And CAP theorem.

ACID free: NoSQL does not support ACID properties due

to consistency features of it. ACID stands for Atomicity,

Concurrency, Isolation and Durability.

 Atomicity: Either the task (or all tasks) within a

transaction are performed or none of them are. This is

the all-or-none principle. If one element of a

transaction fails the entire transaction fails.

 Consistency: The transaction must meet all protocols

or rules defined by the system at all times. The

transaction does not violate those protocols and the

database must remain in a consistent state at the

beginning and end of a transaction; there are never any

half-completed transactions.

 Isolation: No transaction has access to any other

transaction that is in an intermediate or unfinished

state. Thus, each transaction is independent unto itself.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 406

This is required for both performance and consistency

of transactions within a database.

 Durability: Once the transaction is complete, it will

persist as complete and cannot be undone; it will

survive system failure, power loss and other types of

system breakdowns.

BASEstands for Basically Available, Soft state and

Eventual consistency.

 Basically Available: This constraint states that the

system does guarantee the availability of the data as

regards CAP Theorem; there will be a response to any

request. But, that response could still be „failure‟ to

obtain the requested data or the data may be in an

inconsistent or changing state, much like waiting for a

check to clear in your bank account.

 Soft state: The state of the system could change over

time, so even during times without input there may be

changes going on due to „eventual consistency,‟ thus

the state of the system is always „soft.‟

 Eventual consistency: The system will eventually

become consistent once it stops receiving input. The

data will propagate to everywhere it should sooner or

later, but the system will continue to receive input and

is not checking the consistency of every transaction

before it moves onto the next one.

The BASE properties can be summarized in the following

way: “an application works basically all the time

(basically available), does not have to be consistent all the

time (soft-state) but will be in some known-state state

eventually” [3]. In TableI the contrasts of ACID and

BASE are shown.

TABLE I ACID vs. BASE

CAP-Theoremstands forC: Consistency, A: Availability,

P: Partition tolerance [4]:

 Consistency meaning if and how a system is in a

consistent state after the execution of an operation. A

distributed system is typically considered to be

consistent if after an update operation of some writer

all readers see his updates in some shared data source.

 Availabilityand especially high availability meaning

that a system is designed and implemented in a way

that allows it to continue operation (i.e. allowing read

and write operations) if e. g. nodes in a cluster crash or

some hardware or software parts are down due to

upgrades.

 Partition Tolerance understood as the ability of the

system to continue operation in the presence of

network partitions. These occur if two or more

“islands” of network nodes arise which (temporarily or

permanently) cannot connect to each other. Some

people also understand partition tolerance as the ability

of a system to cope with the dynamic addition and

removal of nodes [9].

At most two of these three characteristics can be chosen in

a “shared-data system” [5], as shown Fig. 1. If a system or

parts of a system have to be consistent and partition-

tolerant, ACID properties are required and if availability

and partition-tolerance are favored over consistency, the

resulting system can be characterized by the BASE

properties. For example Amazon‟s Dynamo [6]is available

and partition-tolerant but not strictly consistent, i.e. writes

of one client are not seen immediately after being

committed to all readers. Google‟s Bigtable chooses

neither ACID nor BASE but the third CAP-alternative

being a consistent and available system and consequently

not able to fully operate in the presence of network

partitions[7].

Fig. 1. CAP Theorem

III. NOSQL CHARACTERISTICS

In this section the most important characteristics of

NoSQL are explained.

 NoSQL does not use the relational data model thus

does not use SQL language.

 NoSQL stores large volume of data.

 In distributed environment (spread data to different

machines), we use NoSQL without any inconsistency.

 If any faults or failures exist in any machine, then in

this there will be no discontinuation of any work.

 NoSQL is open source database, i.e. its source code is

available to everyone and is free to use it without any

overheads.

 NoSQL allows data to store in any record that is it is

not having any fixed schema.

 NoSQL does not use concept of ACID properties.

 NoSQL is horizontally scalable leading to high

performance in a linear way.

 It is having more flexible structure [2].

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 407

IV. NOSQL DATA STORE TYPES

On the basis of CAP theorem NoSQL databases are

divided into number of data models. There are four

different types of data store in NOSQL such as Key-value

stores, Column family stores, Document stores, Graph

databases [3, 7].

A. Key-value stores:

Key-value stores have a simple data model based on key-

value pairs, which resembles an associative map or a

dictionary [8]. The key uniquely identifies the value and is

used to store and retrieve the value into and out of the data

store. The value is opaque to the data store and can be

used to store any arbitrary data, including an integer, a

string, an array, or an object, providing a schema-free data

model. Along with being schema-free, key-value stores are

very efficient in storing distributed data, but are not

suitable for scenarios requiring relations or structures. Any

functionality requiring relations, structures, or both must

be implemented in the client application interacting with

the key-value store. Furthermore, because the values are

opaque to them, these data stores cannot handle data-level

querying and indexing and can perform queries only

through keys. Key-value stores can be further classified

as in-memory key-value stores which keep the data in

memory, like Memcached [9] and Redis [10],

and persistent key-value stores which maintain the data on

disk, such as BerkeleyDB [11] Voldemort [12], and

Riak[13]. For higher availability of data stores data objects

are replicated.

In Key/-Value data stores there are two columns

representing key and a value, as shown in Table II. Here

key is unique and representing their values or attributes

corresponding to it and data is represented in the form of

ring and the partitioning of data is done on the basis of

their alphabets (in sorted order) and data is also replicated

in the form of ring. This is represented in next section.

TABLE II KEY/-VALUE STORE

The most important Characteristics of Key value databases

are:

 Number of keys can have a dynamic set of attributes in

the key value databases during storage of data.

 Data stored in the database is stored in the alphabetical

order.

 All the activities can be performed on the data i.e.

CRUD (Create, Read, and Update and Delete).

 All the relationships to the data are stored in the

application code (not explicitly spread) [14].

The main points about Key/-Value (KV) databases are:

 It is one of the simple data model among all as it uses

only key and a value.

 It handles huge data load.

 It scales to large volume of data.

 Replication of data is done using database in the form

of ring. The replicated data is stored in the form of ring

as well as in the alphabetical order. This is as shown in

Fig. 2.

Fig. 2. Ring Partitioning and replication of data

B. Column-family stores:

Most column-family stores are derived from Google

Bigtable [15], in which the data are stored in a column-

oriented way. In Bigtable, the dataset consists of several

rows, each of which is addressed by a unique row key,

also known as a primary key. Each row is composed of a

set of column families, and different rows can have

different column families. Similarly to key-value stores,

the row key resembles the key, and the set of column

families resembles the value represented by the row key.

However, each column family further acts as a key for the

one or more columns that it holds, where each column

consists of a name-value pair. Hadoop HBase [16] directly

implements the Google Bigtable concepts, whereas

Amazon SimpleDB [17] and DynamoDB [18] have a

different data model than Bigtable. SimpleDB and

DymanoDB contain only a set of column name-value pairs

in each row, without having column families. Cassandra

[19], on the other hand, provides the additional

functionality of super-columns, which are formed by

grouping various columns together.

In column-family stores, a column family in different rows

can contain different columns. Occasionally, SimpleDB

and DynamoDB are classified as key-value stores [20];

however we can consider them as column-family stores

due to their table-like data model in which each row can

have different columns. Typically, the data belonging to a

row is stored together on the same server node. However,

Cassandra offers to store a single row across multiple

server nodes by using composite partition keys. In

column-family stores, the configuration of column

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 408

families is typically performed during start-up. However, a

prior definition of columns is not required, which offers

huge flexibility in storing any data type.Columnar

Databases are also known as column family databases

because they are column-oriented databases, as shown in

Fig. 3.

Fig. 3. Column family store

Important characteristics of columnar databases can be

pointed as below:

 Columnar databases are faster than row based

databases while querying.

 In columnar databases, assignment of storage unit is

done to each and every column.

 In the columnar DBMS only the required columns are

read, so reading is faster in this case.

In general, column-family stores provide more powerful

indexing and querying than key-value stores because they

are based on column families and columns in addition to

row keys. Similarly to key-value stores, any logic

requiring relations must be implemented in the client

application [2, 3].

C. Document stores:

Document stores provide another derivative of the key/-

value store data model by using keys to locate documents

inside the data store. Most document stores represent

documents using JSON (JavaScript Object Notation) or

some format derived from it. For example, CouchDB and

the Couchbase server [21] use the JSON format for data

storage, whereas MongoDB [22] stores data in BSON

(Binary JSON). Document stores are suitable for

applications in which the input data can be represented in

a document format. A document can contain complex data

structures such as nested objects and does not require

adherence to a fixed schema. MongoDB provides the

additional functionality of grouping the documents

together into collections. Therefore, inside each collection,

a document should have a unique key.Unlike an RDBMS,

where every row in a table follows the same schema, each

document inside these document stores can have a

different structure. Document stores provide the capability

of indexing documents based on the primary key as well

as on the contents of the documents. This indexing and

querying capability based on document contents

differentiates this data model from the key-value stores

model, in which the values are opaque to the data store.

On the other hand, document stores can store only data

that can be represented as a document. Like key-value

stores, they are inefficient in multiple-key transactions

involving cross-document operations [4], as shown in

Fig.4.

Fig. 4. Document Store

The main characteristics of Document Stores Database

are:

 Documents are addressed in the database using key

(unique) that represents that document.

 There are number of varieties to organize data that is

collections, tags, non-visible metadata and directory

hierarchies.

 In this we can use a key-value lookup to retrieve a

document.

D. Graph databases:

Graph databases originated from graph theory and use

graphs as their data model. A graph is a mathematical

concept used to represent a set of objects, known as

vertices or nodes, and the links (or edges) that interconnect

these vertices. By using a completely different data model

than key-value, column-family, and document stores,

graph databases can efficiently store the relationships

between different data nodes. In graph databases, the

nodes and edges also have individual properties consisting

of key-value pairs. Graph databases are specialized in

handling highly interconnected data and therefore are very

efficient in traversing relationships between different

entities. They are suitable in scenarios such as social

networking applications, pattern recognition, dependency

analysis, recommendation systems and solving path

finding problems raised in navigation systems

[23,24].Some graph databases such as Neo4J [25] are fully

ACID-compliant. However, they are not as efficient as

other NoSQL data stores in scenarios other than handling

graphs and relationships. Moreover, existing graph

databases are not efficient at horizontal scaling because

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 409

when related nodes are stored on different servers,

traversing multiple servers is not performance-efficient

[3].Graph databases are based on the graph theory. In

general, graph usually consists of \nodes, properties and

edges [24], as shown in Fig. 5.

The main characteristics of Graph databases are:

 Graph traversals are executed with constant speed

independent of total size of the graph.

 Graph databases are having high performance in

context to their deep traversals.

 These are used for shortest path calculations.

 These are scalable. But its complexity increases.

Fig. 6. Graph database

V. TAXONOMYOF NOSQL BY DATA STORES

A short comparison of classes of NoSQL databases by

some nonfunctional categories like performance,

scalability, flexibility, complexity and functionality is

presented in Table 3 and 4.

TABLE 3 CLASSIFICATION – CATEGORIZATION

and COMPARISON

TABLE 4 CLASSIFICATION – CATEGORIZATION

and COMPARISON

In the Fig. 6 the historical trend of various NoSQL

databases popularityis shown.

In order to allow comparisons, the initial value is

normalized to 100 [26].

Fig.6.Complete trend, starting with Jan 2013 [26]

VI. NOSQL IN IOT

In general NoSQL databases do not enforce a strict

schema and hence allow for highly flexible data modeling.

The traditional relational database management systems

will continue to have a role in the IoT which is stands for

Internet of Things, when processing structured, highly

uniform data sets, generated from a vast number of

enterprise IT systems and where this data is managed in a

relatively isolated manner. When it comes to managing

more heterogeneous data generated by millions of sensors,

devices and gateways, each with their own data structures

and potentially becoming connected and integrated over

the course of many years, databases will require new

levels of flexibility, agility and scalability. In this

environment, NoSQL databases are proving their value

[27].

Data in the Internet of Things is different because it is

almost by definition not completely known in advance.

The market is moving so fast that its systems must be

flexible, allowing the introduction of new sensors/devices

and the data they emit. Data generated from an

exponentially growing number of diverse sensors, devices,

applications, and things will be accompanied by a growing

diversity in the structure and scale of that data and more

sources of additional data ranging from data sourced from

corporate systems to crowd sourced data will need to be

combined with this data[27].

There are several reasons that should be considered a

NoSQL database in IoT [28]:

 Sensors can send huge amounts of data since they run

24/7. All of that data adds up to the need for a larger

storage capacity. In this case relational databases were

never really meant to deal with the kind of data that

sensors generate. For one thing, sensor data does not

always make sense in tabular format.

 SQL was originally designed for relatively static data

structured as a table. Data from sensors can change a

lot and provides a continuous stream. And the ability of

adding and removing entries from anywhere is needed,

which can prove difficult with relational databases.

IJARCCE
ISSN (Online) 2278-1021

ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering

ISO 3297:2007 Certified

Vol. 5, Issue 12, December 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.51293 410

 NoSQL databases are also more scalable, offering

flexibility in data models. It is possible to have a

structure similar to SQL with wide tables, or to choose

to go with a document-oriented database, key-value

database, or graph database. Time series databases are

one of the more obvious choices for Internet of Things

applications specifically.

Some businesses may join the big data revolution without

knowing where they are actually going to store their data.

It could been have a cluster dedicated to data and another

to analytics, but that is expensive. It is preferred to have

data and analytics in the same cluster. NoSQL eliminates

budget waste for those with two different clusters that

amount to the same thing [28].

VII. CONCLUSION

Traditional database architectures are proved to be

inappropriate for many use cases because in current

scenario speed and scalability are needed. Therefore

nowadays applications are shifting towards In-Memory

data storage which could boost the data access and the

system could look forward for databases which could

work according to the use cases and NoSQL is the solution

for use cases.The main aim of this paper was to give an

overview of NoSQL databases and its important concepts

like ACID, BASE and CAP theorem. NoSQL doesn‟t

follow ACID properties because of data consistency. On

the basis of the CAP theorem, this paper presented

different types of data stores, which are Key/-Value data

store, Column family data store, Document data store and

Graph database with comparison and taxonomy of them.

In addition to all these,the historical trend of popularity of

data stores was presented. At the end, the reasons to

consider a NoSQL Solution for Internet of Things data

wasdescribed.Further researchesare going on in the new

technologies in Big Data and IoTwhich are arising the

need for NoSQL that is polygon persistence.

REFERENCES

[1] BahaaldineAzarmi, Scalable big data architecture, Published by

Apress, 2016.

[2] Min Chen, ShiwennMao,Yin Zhang, VicctorC.M.Leung, Big Data
technologies, challenges and prospects, Published by Springer,

2014.

[3] ChristofStrauch, NoSQL Databases,Stuttgart Media University,
2014.

[4] Gray, Jonathan: CAP Theorem. August 2009. – Blog post of 2009-

08-24.http://devblog.streamy.com/2009/08/24/cap-theorem/
[5] Burrows, Mike: The Chubby lock service for loosely-coupled

distributed systems. In: Proceedings of the 7th symposium on

Operating Systems Design and Implementation. Berkeley,CA,
USA: USENIX Association, 2006 (OSDI ‟06), p. 335–350. – Also

available online.http://labs.google.com/papers/chubby-osdi06.pdf

[6] DeCandia, Giuseppe; Hastorun, Deniz; Jampani, Madan;
Kakulapati, Gunavardhan; Lakshman, Avinash; Pilchin, Alex;

Sivasubramanian, Swaminathan; Vosshall, Peter; Vogels, Werner:

Dynamo: Amazon‟s Highly Available Key-valueStore. September
2007. –

http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-

dynamo-sosp2007.pdf

[7] Katarina Grolinger,Wilson A Higashino, Abhinav Tiwari and
Miriam AM Capretz, Data management in cloud environments:

NoSQL and NewSQL data stores, ournal of Cloud Computing:

Advances, Systems and ApplicationsAdvances, Systems and
Applications2013

[8] Hecht R, Jablonski S: NoSQL evaluation: A use case oriented

survey. Proc 2011 IntConf Cloud Serv Computing 2011, 336–341.
[9] Memcached http://memcached.org/ . Accessed 20Oct 2016

[10] Redis http://redis.io/ . Accessed 20 Oct 2016

[11] Hoff, Todd: And the winner is: MySQL or Memcached or Tokyo
Tyrant?October 2009.–Blog post of 2009-10-

28.http://highscalability.com/blog/2009/10/28/and-the-winner-is-

mysql-or-memcached-ortokyo-tyrant.html
[12] DAMA - Philadelphia / Delaware Valley, the “Role of Data

Architecture in NOSQL”, Wednesday January 11th, 2012,

http://www.damaphila.org/HaugheyNOSQL.pdf
[13] Klophaus R: Riak Core: building distributed applications without

shared state. Proceedings of CUFP‟10 - ACM SIGPLAN

Commercial Users of Functional Programming. New York, NY,
USA: ACM Press; 2010:1.

[14] An Oracle White Paper, “Oracle NoSQL Database”, September

2011,
http://www.oracle.com/technetwork/database/nosqldb/learnmore/no

sql-database-498041.pdf

[15] Chang F, Dean J, Ghemawat S, Hsieh W, Wallach D, Burrows M,
Chandra T, Fikes A, Gruber R: Bigtable: A distributed structured

data storage system. 7th OSDI 2006, 26: 305–314.

[16] Apache HBase http://hbase.apache.org/ . Accessed 20 Oct 2016
[17] Murty J: Programming Amazon Web Services: S3, EC2, SQS, FPS,

and SimpleDB. O‟Reilly Media, Inc; 2008.

[18] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A,
Pilchin A, Sivasubramanian S, Vosshall P, Vogels W: Dynamo:

Amazon‟s highly available Key-value store. ACM SIGOPS

Operating Syst Rev 2007, 41: 205.
[19] Lakshman A, Malik P: Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Syst Rev 2010, 44(2):35–

40.
[20] DeCandia G, Hastorun D, Jampani M, Kakulapati G, Lakshman A,

Pilchin A, Sivasubramanian S, Vosshall P, Vogels W: Dynamo:
Amazon‟s highly available Key-value store. ACM SIGOPS

Operating Syst Rev 2007, 41: 205.

[21] Couchbase Server: The NoSQL document
database. http://www.couchbase.com/couchbase-server/overview . .

Accessed 20 Oct 2016

[22] MongoDB http://www.mongodb.org/ . Accessed 20 Oct 2016

[23] Lakshman A, Malik P: Cassandra: a decentralized structured

storage system. ACM SIGOPS Operating Syst Rev 2010, 44(2):35–

40.
[24] Buerli M: The current state of graph databases.

2012.http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08

%20Graph_Databases_Survey.pdf . Accessed 20 Oct 2016.
[25] Neo4j - What is a Graph Database? http://www.neo4j.org/.

Accessed 20 Oct 2016.

[26] Complete trend, starting with January 2013. http://db-
engines.com/en/ranking_categories. Accessed 20 Oct 2016.

[27] Why You Need NoSQL For The Internet Of Things.

http://readwrite.com/2014/11/28/internet-of-things-nosql-data/,
Accessed 31 Dec 2016.

[28] NoSQL and the Internet of Things.

http://www.smartdatacollective.com/kingmesal/366893/nosql-and-
internet-things, Accessed 31 Dec 2016.

http://devblog.streamy.com/2009/08/24/cap-theorem/
http://labs.google.com/papers/chubby-osdi06.pdf
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://s3.amazonaws.com/AllThingsDistributed/sosp/amazon-dynamo-sosp2007.pdf
http://memcached.org/
http://redis.io/
http://highscalability.com/blog/2009/10/28/and-the-winner-is-mysql-or-memcached-ortokyo-tyrant.html
http://highscalability.com/blog/2009/10/28/and-the-winner-is-mysql-or-memcached-ortokyo-tyrant.html
http://www.damaphila.org/HaugheyNOSQL.pdf
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://hbase.apache.org/
http://www.couchbase.com/couchbase-server/overview
http://www.mongodb.org/
http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf
http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf
http://www.cs.utexas.edu/~cannata/dbms/Class%20Notes/08%20Graph_Databases_Survey.pdf
http://www.neo4j.org/
http://db-engines.com/en/ranking_categories
http://db-engines.com/en/ranking_categories
http://readwrite.com/2014/11/28/internet-of-things-nosql-data/
http://www.smartdatacollective.com/kingmesal/366893/nosql-and-internet-things
http://www.smartdatacollective.com/kingmesal/366893/nosql-and-internet-things

